If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-50q-5625=0
a = 1; b = -50; c = -5625;
Δ = b2-4ac
Δ = -502-4·1·(-5625)
Δ = 25000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25000}=\sqrt{2500*10}=\sqrt{2500}*\sqrt{10}=50\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50\sqrt{10}}{2*1}=\frac{50-50\sqrt{10}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50\sqrt{10}}{2*1}=\frac{50+50\sqrt{10}}{2} $
| 17+7x=2(-x+3)-16 | | g(3)=6 | | -10x^2(x-26x(x+1=0 | | 8b+8-4bb=5 | | 1/2(x-64)=13+5x | | x+3x=10,500 | | -8=(9x-7+2x-8) | | 3y-2=68-90 | | 4p+3=-5(3-2p) | | -5(2x-3)=2(x-28)-25 | | -10x+58+6x+41=11 | | 7(12)-12y=180 | | 5(x-6)+9=4x-5 | | 6n+0.9=2.4 | | 2,3x+4,0=5 | | 2,3x+4,0=4 | | 20x+14=(10x(2))+7+9+(-2) | | 4,0x+2,3=3 | | 2,3x+4,0=3 | | X/2+x=40 | | 7(x-7)+19=7x-30 | | -2x+12-4x=4-6x+8 | | 7(x−7)+19=7x−30 | | -12=4(3x+9)+3(3x-2 | | -2x*12-4x=4-6x+8 | | 8x10/4=20 | | 9,3q-8,2=5 | | 4^-2y=12 | | 6x+7=16x-18 | | 6x+7=26x-18 | | 6-8x=6x-8x-1 | | -3+4x=9-2x |